帳號:guest(18.222.147.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者(中):邱宜珊
作者(英):Chiu, Yi-Shan
論文名稱(中):利用PSInSAR觀察原住民部落之地表形變-以尖石鄉秀巒村為例
論文名稱(英):Investigation of Displacement over Jianshi Indigenous Tribes using PSInSAR Observations
指導教授(中):林士淵
指導教授(英):Lin, Shih-Yuan
口試委員:曾國欣
林玉菁
林士淵
口試委員(外文):Tseng, Kuo-Hsin
Lin, Yu-Ching
Lin, Shih-Yuan
學位類別:碩士
校院名稱:國立政治大學
系所名稱:地政學系
出版年:2020
畢業學年度:108
語文別:中文
論文頁數:104
中文關鍵詞:永久散射體雷達干涉技術Sentinel-1地表形變
英文關鍵詞:PSInSARSentinel-1Displacement
Doi Url:http://doi.org/10.6814/NCCU202001015
相關次數:
  • 推薦推薦:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • gshot_favorites title msg收藏:0
台灣地質年輕、地質脆弱且為多山的地形,夏季颱風與豪雨的侵襲帶來豐沛雨量,同時易於山區之不穩定的區域發生土石的災害,在發生過山崩的區域,也容易再次發生山崩;除了自然的災害,人為的大規模開發也會造成土地結構的破壞,改變當地之地表樣態,對居住環境帶來威脅。當前述之情形發生時,將帶來當地人財的損失,因此對不穩定區域進行地表形變的觀察有其必要性。
過去以水準測量觀察地表形變耗時,以光學影像判釋時也易受到雲層遮蔽影響,因此本研究採用雷達影像,影像具有大範圍觀察地表形變、不受雲層的影響等特性。本研究以Sentinel-1升軌與降軌方向的影像進行永久散射體雷達干涉(PSInSAR)技術對台灣尖石鄉秀巒村原住民山區部落進行地表形變的觀察,取得2017年9月至2019年7月之時間序列成果。在不同軌道方向的成果在能偵測到PS點訊號的地方具有互補的功用,在植被區域因為失相關的影響,沒有偵測出PS點的成果。其中,泰崗部落之周圍潛在大規模崩塌範圍內可觀察到PS點處於下降的趨勢,採大地工程測量方法的成果也觀察出下降趨勢的成果,從成果可以得知,在能夠取得PS成果的地方,PSInSAR有助於找到部落中相對不穩定的區域,以此可以將成果提供給當局政府以利做更進一步的風險管理與評估。
One of the geological features in Taiwan is the young and fragile properties of the terrain. In summer, typhoons usually hit Taiwan and normally bring plenty of rainfall. These may quickly cause disasters, such as landslides in instability places, especially in mountain areas. Once these disasters occur, the loss of property or human life may extend beyond our imagination. Therefore, it is necessary to observe the ground surface displacement in the instability area. SAR images were used in this study, which has significant advantages on a larger scale to observe displacements, and the quality of images will not be affected by the cloud coverage. Together with PSInSAR technique, Sentinel-1 images in ascending and descending tracks acquired from 2017 to 2019 were used to estimate the land stability in indigenous settlements in Jian-Shi Town, Hsinchu County. In Thyakan tribe, it was observed that a time-series subsidence trend appears in potential large-scale landslide areas, which met the surface deformation measured by other geotechnical engineering survey methods. Based on the results, we recommended that PSInSAR monitoring was of great benefit to identify relatively unstable areas over the tribes in the mountainous area. The results could support the risk management and evaluation for the local government.
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 5
第三節 論文架構 6
第二章 理論基礎與文獻回顧 7
第一節 多時序雷達干涉方法 7
第二節 多時序雷達干涉之應用 24
第三章 研究方法與流程 35
第一節 研究區域 35
第二節 研究資料與軟體 37
第三節 研究流程 41
第四節 PSInSAR於SARPROZ處理 43
第四章 研究成果與分析 49
第一節 PSInSAR成果 49
第二節 PSInSAR成果分析 67
第五章 成果討論 79
第六章 結論與建議 87
第一節 結論 87
第二節 建議 90
參考文獻 91
一、英文參考文獻 91
二、中文參考文獻 98
三、網頁參考 99
附錄 100

Agram, P. S. (2010). Persistent scatterer interferometry in natural terrain. stanford university Stanford,
Baek, J., Kim, S.-W., Park, H.-J., Jung, H.-S., Kim, K.-D., Kim, J. W. (2008). Analysis of ground subsidence in coal mining area using SAR interferometry. Geosciences Journal, 12(3), 277-284.
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience remote sensing, 40(11), 2375-2383.
Casu, F., Manzo, M., & Lanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sensing of Environment, 102(3), 195-210. doi:https://doi.org/10.1016/j.rse.2006.01.023
Chen, R.-F., Lee, C.-Y., Yin, H.-Y., Huang, H.-Y., Cheng, K.-P., Lin, C.-W. (2017). Monitoring the deep-seated landslides by using ALOS/PALSAR satellite imagery in the disaster area of 2009 Typhoon Morakot, Taiwan. Paper presented at the Workshop on World Landslide Forum.
Ciampalini, A., Bardi, F., Bianchini, S., Frodella, W., Del Ventisette, C., Moretti, S., Casagli, N. (2014). Analysis of building deformation in landslide area using multisensor PSInSAR™ technique. International Journal of Applied Earth Observation Geoinformation, 33, 166-180.
Cigna, F., Jordan, H., Bateson, L., McCormack, H., Roberts, C. (2015). Natural and anthropogenic geohazards in greater London observed from geological and ERS-1/2 and ENVISAT persistent scatterers ground motion data: Results from the EC FP7-SPACE PanGeo project. Pure Applied Geophysics, 172(11), 2965-2995.
Colesanti, C., Ferretti, A., Novali, F., Prati, C., Rocca, F. (2003). SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Transactions on geoscience remote sensing, 41(7), 1685-1701.
Colesanti, C., Ferretti, A., Prati, C., Rocca, F. (2003). Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering geology, 68(1-2), 3-14.
Colesanti, C., and Wasowski, J. (2006). Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering geology, 88(3-4), 173-199.
Colombo, D., and TRE. (2013). Measuring deformation from space. InSAR as an operational tool for mining sector. Paper presented at the Proc. South African Surveying and Geomatics Indaba (SASGI).
Costantini, M., Falco, S., Malvarosa, F., Minati, F., Trillo, F., Vecchioli, F. (2010). Persistent scatterer pairs (PSP) approach in very high resolution SAR interferometry. Paper presented at the 8th European Conference on Synthetic Aperture Radar.
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., Crippa, B. (2016). Persistent scatterer interferometry: A review. ISPRS Journal of Photogrammetry Remote Sensing, 115, 78-89.
Dekens, J. (2007). Local knowledge for disaster preparedness: A literature review: International Centre for Integrated Mountain Development (ICIMOD).
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience Remote Sensing of Environment, 49(9), 3460-3470.
Ferretti, A., Prati, C., Rocca, F. (1999). Permanent scatterers in SAR interferometry. Paper presented at the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293).
Ferretti, A., Prati, C., Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. doi:10.1109/36.898661
Fornaro, G., Reale, D., Verde, S. (2012). Bridge thermal dilation monitoring with millimeter sensitivity via multidimensional SAR imaging. IEEE Geoscience Remote Sensing Letters, 10(4), 677-681.
Gernhardt, S., Adam, N., Eineder, M., Bamler, R. (2010). Potential of very high resolution SAR for persistent scatterer interferometry in urban areas. Annals of GIS, 16(2), 103-111.
Gutiérrez Martín, A., Herrada Gutiérrez, M. Á., Yenes, J. I., Castedo, R. (2019). Development and validation of the terrain stability model for assessing landslide instability during heavy rain infiltration. Natural Hazards Earth System Sciences(19), 721-736.
Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis (Vol. 2): Springer Science & Business Media.
Hilley, G. E., Bürgmann, R., Ferretti, A., Novali, F., & Rocca, F. (2004). Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 304(5679), 1952-1955.
Hiwasaki, L., Luna, E., Shaw, R. (2014). Process for integrating local and indigenous knowledge with science for hydro-meteorological disaster risk reduction and climate change adaptation in coastal and small island communities. International journal of disaster risk reduction, 10, 15-27.
Hooper, A. (2008). A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16).
Hooper, A., Zebker, H., Segall, P., Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23). doi:10.1029/2004gl021737
Hu, Z., and Mallorquí, J. J. (2019). An Accurate Method to Correct Atmospheric Phase Delay for InSAR with the ERA5 Global Atmospheric Model. Remote Sensing, 11(17), 1969.
Jan, C.-D., and Chen, C.-L. (2005). Debris flows caused by Typhoon Herb in Taiwan. In Debris-Flow Hazards and Related Phenomena (pp. 539-563): Springer.
Jung, J., Kim, D.-j., Park, S.-E. (2013). Correction of atmospheric phase screen in time series InSAR using WRF model for monitoring volcanic activities. IEEE transactions on geoscience remote sensing, 52(5), 2678-2689.
Khorrami, M., Alizadeh, B., Ghasemi Tousi, E., Shakerian, M., Maghsoudi, Y., Rahgozar, P. (2019). How Groundwater Level Fluctuations and Geotechnical Properties Lead to Asymmetric Subsidence: A PSInSAR Analysis of Land Deformation over a Transit Corridor in the Los Angeles Metropolitan Area. Remote Sensing, 11(4), 377.
Krassakis, P., Kazana, S., Chen, F., Koukouzas, N., Parcharidis, I., Lekkas, E. (2019). Detecting subsidence spatial risk distribution of ground deformation induced by urban hidden streams. Geocarto International(just-accepted), 1-13.
Lagios, E., Sakkas, V., Novali, F., Bellotti, F., Ferretti, A., Vlachou, K., Dietrich, V. (2013). SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992–2012): Tectonic implications. Tectonophysics, 594, 38-59.
Lauknes, T., Shanker, A. P., Dehls, J., Zebker, H., Henderson, I., Larsen, Y. (2010). Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sensing of Environment, 114(9), 2097-2109.
Lazecky, M., Perissin, D., Bakon, M., de Sousa, J. M., Hlavacova, I., Real, N. (2015). Potential of satellite InSAR techniques for monitoring of bridge deformations. Paper presented at the 2015 Joint Urban Remote Sensing Event (JURSE).
Meisina, C., Notti, D., Zucca, F., Ceriani, M., Colombo, A., Poggi, F., Roccati, A., Zaccone, A. (2013). The use of PSInSAR™ and SqueeSAR™ techniques for updating landslide inventories. In Landslide science and practice (pp. 81-87): Springer.
Mercer, J., Kelman, I., Taranis, L., Suchet‐Pearson, S. (2010). Framework for integrating indigenous and scientific knowledge for disaster risk reduction. Disasters, 34(1), 214-239.
Milczarek, W., Blachowski, J., Grzempowski, P. (2017). Application of PSInSAR for assessment of surface deformations in post-mining area–case study of the former Walbrzych hard coal basin (SW Poland). Acta Geodynamica et Geomaterialia, 14(1), 41-52.
Milillo, P., Bürgmann, R., Lundgren, P., Salzer, J., Perissin, D., Fielding, E., Biondi, F., Milillo, G. (2016). Space geodetic monitoring of engineered structures: The ongoing destabilization of the Mosul dam, Iraq. Scientific reports, 6, 37408.
Notti, D., Galve, J. P., Mateos, R. M., Monserrat, O., Lamas-Fernández, F., Fernández-Chacón, F., Roldán-García, F. J., Pérez-Peña, J. V., Crosetto, M., Azañón, J. M. (2015). Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain). Landslides, 12(5), 1007-1014.
Novellino, A., Cigna, F., Brahmi, M., Sowter, A., Bateson, L., Marsh, S. (2017). Assessing the feasibility of a national InSAR ground deformation map of Great Britain with Sentinel-1. Geosciences, 7(2), 19.
Oliveira, S., Zêzere, J., Catalão, J., Nico, G. (2015). The contribution of PSInSAR interferometry to landslide hazard in weak rock-dominated areas. Landslides, 12(4), 703-719.
Osmanoğlu, B., Sunar, F., Wdowinski, S., Cabral-Cano, E. (2016). Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry Remote Sensing, 115, 90-102.
Parker, A. L., Biggs, J., Walters, R. J., Ebmeier, S. K., Wright, T. J., Teanby, N. A., Lu, Z. (2015). Systematic assessment of atmospheric uncertainties for InSAR data at volcanic arcs using large-scale atmospheric models: Application to the Cascade volcanoes, United States. Remote Sensing of Environment, 170, 102-114.
Peltier, A., Bianchi, M., Kaminski, E., Komorowski, J. C., Rucci, A., Staudacher, T. (2010). PSInSAR as a new tool to monitor pre‐eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise. Geophysical Research Letters, 37(12).
Perissin, D. (2016). Interferometric SAR multitemporal processing: Techniques and applications. In Multitemporal Remote Sensing (pp. 145-176): Springer.
Perissin, D., Wang, Z., Lin, H. (2012). Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS Journal of Photogrammetry Remote Sensing, 73, 58-67.
Perissin, D., Wang, Z., Wang, T. (2011). The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. Proceedings of the ISRSE,Sidney,Australia, 1015.
Perski, Z., Hanssen, R., Wojcik, A., Wojciechowski, T. (2009). InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland. Engineering geology, 106(1-2), 58-67.
Plank, S. (2014). Rapid damage assessment by means of multi-temporal SAR—A comprehensive review and outlook to Sentinel-1. Remote Sensing, 6(6), 4870-4906.
Potin, P., Bargellini, P., Laur, H., Rosich, B., Schmuck, S. (2012). Sentinel-1 mission operations concept. Paper presented at the 2012 IEEE International Geoscience and Remote Sensing Symposium.
Prats-Iraola, P., Nannini, M., Scheiber, R., De Zan, F., Wollstadt, S., Minati, F., . . . De Martino, P. (2015). Sentinel-1 assessment of the interferometric wide-swath mode. Paper presented at the 2015 IEEE international geoscience and remote sensing symposium (IGARSS).
Qin, Y., Hoppe, E., Perissin, D. (2020). Slope Hazard Monitoring Using High-Resolution Satellite Remote Sensing: Lessons Learned From a Case Study. ISPRS International Journal of Geo-Information, 9(2), 131.
Qu, F., Lu, Z., Zhang, Q., Bawden, G. W., Kim, J.-W., Zhao, C., Qu, W. (2015). Mapping ground deformation over Houston–Galveston, Texas using multi-temporal InSAR. Remote Sensing of Environment, 169, 290-306.
Rouyet, L., Lauknes, T. R., Davids, C. (2018). Ground displacements on Aitik tailings dams using SAR Interferometry.(21/2018).
Sabel, D., Bartalis, Z., Wagner, W., Doubkova, M., Klein, J.-P. (2012). Development of a Global Backscatter Model in support to the Sentinel-1 mission design. Remote Sensing of Environment, 120, 102-112.
Sheng, Y., Wang, Y., Linlin Ge, C., Rizos, C. (2009). Differential radar interferometry and its application in monitoring underground coal mining-induced subsidence.
Spaans, K., Hooper, A. (2016). InSAR processing for volcano monitoring and other near‐real time applications. Journal of Geophysical Research: Solid Earth, 121(4), 2947-2960.
Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Wegmüller, U., Rizzetto, F. (2005). Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sensing of Environment, 98(4), 403-413.
Vicari, A., Famiglietti, N. A., Colangelo, G., Cecere, G. (2019). A comparison of multi temporal interferometry techniques for landslide susceptibility assessment in urban area: an example on stigliano (MT), a town of Southern of Italy. Geomatics, Natural Hazards, 10(1), 836-852.
Vollrath, A., Zucca, F., Bekaert, D., Bonforte, A., Guglielmino, F., Hooper, A. J., Stramondo, S. J. R. S. (2017). Decomposing DInSAR time-series into 3-D in combination with GPS in the case of low strain rates: An application to the Hyblean Plateau, Sicily, Italy. 9(1), 33.
Xiao, R., and He, X. (2013). GPS and InSAR time series analysis: Deformation monitoring application in a hydraulic engineering resettlement zone, southwest China. Mathematical problems in engineering, 2013.
Yang, S.-Y., Jan, C.-D., Wang, J.-S. (2018). Landslides Triggered by Typhoon Morakot in Taiwan. Environmental Risks, 13.
Yhokha, A., Goswami, P. K., Chang, C.-P., Yen, J.-Y., Ching, K.-E., Aruche, K. M. (2018). Application of Persistent Scatterer Interferometry (PSI) in monitoring slope movements in Nainital, Uttarakhand Lesser Himalaya, India. Journal of Earth System Science, 127(1), 6.
Zebker, H. A., Rosen, P. A., Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research: Solid Earth, 102(B4), 7547-7563.
Zhang, L., Ding, X., Lu, Z. (2010). Modeling PSInSAR time series without phase unwrapping. IEEE Transactions on geoscience remote sensing, 49(1), 547-556.
Zhang, L., Ding, X., Lu, Z. (2011a). Deformation rate estimation on changing landscapes using temporarily coherent point InSAR. Paper presented at the Proc. Fringe.
Zhang, L., Ding, X., Lu, Z. (2011b). Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS Journal of Photogrammetry Remote Sensing of Environment, 66(1), 146-152.
Zhang, L., Lu, Z., Ding, X., Jung, H.-s., Feng, G., Lee, C.-W. (2012). Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sensing of Environment, 117, 429-439.

潘國樑、林彥享、黃春銘、柯傑夫、鄭錦桐、冀樹勇,2011,「小林埋村事件之還原---衛星影像判釋」,航測及遙測學刊,16(1),63-78。
戴欣怡和許中立,2008,「好茶部落土砂災害與部落復舊措施之檢討」,坡地防災學報,7(1),38-54。
藍振維,2019,「多時相干涉雷達監測建物變形及評估驅動因素—以臺北市為例」,政治大學地政學系學位論文,1-101。
林書涵,2014,「應用多時域雷達干涉技術與 C 及 L 波段雷達影像分析彰化地區地表變形」,交通大學土木工程系所學位論文,1-81。
黃文隆,2018,「傾斜儀新式量測方法在邊坡滑動監測之應用」,中興大學土木工程學系碩士學位論文,1-101。
黃郁棠、張奇、吳究,、蔡長興,2015,「以統計同質分布散射體干涉雷達技術偵測地表變形」,航測及遙測學刊,19(3),239-251。
洪偉嘉、黃大任、張磊,2015,「時域相關點雷達干涉技術應用於雲林嚴重地層下陷區監測」, 航測及遙測學刊,19(3),225-237。
蕭國亮、李國正、吳岳霖,2017,「106年重大土砂災害情蒐集資料紀實」,行政院農委會水土保持局委辦計畫摘要報告。
陳亮全、歐蜜偉浪、吳杰穎,2018,「原住民防災社區行動計畫:運用傳統智慧建構災害韌性部落」,行政院農業委員會水土保持局創新研究計畫期末報告。
陳亮全、歐蜜偉浪、吳杰穎,2019,「大鎮西堡地區災害韌性部落實作研究」,行政院農業委員會水土保持局。
陳昭維、廖瑞堂、陳御崇、呂家豪、汪俊彥、林日龍、林庭輝,2018,「角板山地區桃117線0K+500地滑區邊坡穩定處理」,Journal of Prefessional Geotechnical Engineers,NO.17,60-73。
鍾明劍、陳建新、李璟芳、黃韋凱、譚志豪,2016,「潛在大規模崩塌地對鄰近聚落衝擊之調查與評估方法」,Journal of Chinese Soil and Water Conservation,47(3),122-134。
葉高華,2016,「從原住民族分布圖談起」,人文與社會科學簡訊,19-26。
王偉哲、王承德、洪藝瑋、吳德驛,2018,「 大規模崩塌區道路,建物災害調查及其原因探討-以鹿場地區為例」,聯大學報,15(1), 125-143。

SARPROZ,https://www.sarproz.com/sensors-and-imaging-modes/
ESA,https://sentinel.esa.int/
原傳媒,http://www.aborigine.tw/?p=547951
新竹縣政府,https://www.hsinchu.gov.tw/News_Content.aspx?n=153&s=106306
自由時報,https://news.ltn.com.tw/news/life/breakingnews/1749853
好房網,https://news.housefun.com.tw/news/article/189640174510.html
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *